Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration.

blue FKF1/GI HeLa mouse in vivo primary rat BMSCs Cell differentiation
Stem Cell Res Ther, 10 Jun 2021 DOI: 10.1186/s13287-021-02412-8 Link to full text
Abstract: The spatiotemporal regulation of essential genes is crucial for controlling the growth and differentiation of cells in a precise manner during regeneration. Recently, optogenetics was considered as a potent technology for sophisticated regulation of target genes, which might be a promising tool for regenerative medicine. In this study, we used an optogenetic control system to precisely regulate the expression of Lhx8 to promote efficient bone regeneration.
2.

Optogenetic control of mesenchymal cell fate towards precise bone regeneration.

blue FKF1/GI HEK293 rat in vivo rat primary mesenchymal stem cells Transgene expression Cell differentiation
Theranostics, 18 Oct 2019 DOI: 10.7150/thno.36455 Link to full text
Abstract: Rationale: Spatial-temporal control of cell fate in vivo is of great importance for regenerative medicine. Currently, there remain no practical strategies to tune cell-fate spatial-temporally. Optogenetics is a biological technique that widely used to control cell activity in genetically defined neurons in a spatiotemporal-specific manner by light. In this study, optogenetics was repurposed for precise bone tissue regeneration. Methods: Lhx8 and BMP2 genes, which are considered as the master genes for mesenchymal stem cell proliferation and differentiation respectively, were recombined into a customized optogenetic control system. In the system, Lhx8 was constitutively expressed, while BMP2 together with shLhx8 expression was driven by blue light. Results: As expected, blue light induced BMP2 expression and inactivated Lhx8 expression in cells infected with the optogenetic control system. Optogenetic control of BMP2 and Lhx8 expression inversely regulates MSC fate in vitro. By animal study, we found that blue light could fine-tune the regeneration in vivo. Blue light illumination significantly promotes bone regeneration when the scaffold was loaded with MSCs infected with adeno-Lhx8, GI-Gal4DBD, LOV-VP16, and BMP2-shLhx8. Conclusions: Together, our study revealed that optogenetic control of the master genes for mesenchymal stem cell proliferation and differentiation would be such a candidate strategy for precise regenerative medicine.
3.

Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.

red IlaC IlaM E. coli HEK293 in vitro mouse in vivo Immediate control of second messengers
ACS Synth Biol, 10 Jun 2019 DOI: 10.1021/acssynbio.8b00528 Link to full text
Abstract: Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
Submit a new publication to our database